Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 68(4): 1097-105, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16014804

RESUMO

Alpha-ketoisocaproate directly inhibits the ATP-sensitive K(+) channel (K(ATP) channel) in pancreatic beta-cells, but it is unknown whether direct K(ATP) channel inhibition contributes to insulin release by alpha-ketoisocaproate and related alpha-keto acid anions, which are generally believed to act via beta-cell metabolism. In membranes from HIT-T15 beta-cells and COS-1 cells expressing sulfonylurea receptor 1, alpha-keto acid anions bound to the sulfonylurea receptor site of the K(ATP) channel with affinities increasing in the order alpha-ketoisovalerate < alpha-ketovalerate < alpha-ketoisocaproate < alpha-ketocaproate < beta-phenylpyruvate. Patch-clamp experiments revealed a similar order for the K(ATP) channel-inhibitory potencies of the compounds (applied at the cytoplasmic side of inside-out patches from mouse beta-cells). These findings were compared with the insulin secretion stimulated in isolated mouse islets by alpha-keto acid anions (10 mM). When all K(ATP) channels were closed by the sulfonylurea glipizide, alpha-keto acid anions amplified the insulin release in the order beta-phenylpyruvate < alpha-ketoisovalerate < alpha-ketovalerate approximately alpha-ketocaproate < alpha-ketoisocaproate. The differences in amplification apparently reflected special features of the metabolism of the individual alpha-keto acid anions. In islets with active K(ATP) channels, the first peak of insulin secretion triggered by alpha-keto acid anions was similar for alpha-ketoisocaproate, alpha-ketocaproate, and beta-phenylpyruvate but lower for alpha-ketovalerate and insignificant for alpha-ketoisovalerate. This difference from the above orders indicates that direct K(ATP) channel inhibition is not involved in the secretory responses to alpha-ketoisovalerate and alpha-ketovalerate, moderately contributes to initiation of insulin secretion by alpha-ketoisocaproate and alpha-ketocaproate, and is a major component of the insulin-releasing property of beta-phenylpyruvate.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Cetoácidos/farmacologia , Canais de Potássio/metabolismo , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Ânions , Benzamidas/farmacologia , Células COS , Cricetinae , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Canais de Potássio/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Receptores de Sulfonilureias
2.
Biochem Pharmacol ; 65(4): 599-602, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12566087

RESUMO

Hypoglycaemic sulfonylureas initiate insulin secretion by direct inhibition of ATP-sensitive K(+)-channels in the pancreatic beta-cells. These channels are composed of two proteins, a pore-forming subunit (K(IR)6.2 in the case of beta-cells) and a regulatory subunit, the sulfonylurea receptor (SUR). In the present study we characterised the interaction with SURs of the new sulfonylurea analogues 5-chloro-N-[2-(4-hydroxyphenyl)ethyl]-2-methoxybenzamide (compound I) and (4-[2-(5-chloro-2-methoxybenzamido)ethyl]phenyl)phosphate (compound II). Compounds I and II differ from the sulfonylurea analogue meglitinide only in so far as the carboxylic group of meglitinide is replaced by a hydroxyl group or a phosphate group, respectively. The binding affinities of compound II for the SUR subtypes SUR1 (identified in beta-cells) and SUR2A (identified in heart and skeletal muscle) were higher by 55 or 21-fold, respectively, than the corresponding affinities for compound I. In inside-out patch-clamp experiments compound II inhibited ATP-sensitive K(+)-channels of the SUR1/K(IR)6.2-type (characteristic of beta-cells) with an IC(50) value of 0.16 microM which is 6-fold lower than the corresponding value for meglitinide. These findings strongly support the conclusion that the interaction of sulfonylureas and acidic analogues with SURs is favoured by the anionic group of these drugs and that a phosphate group allows more efficient ligand interaction with SUR1 than a carboxylic group.


Assuntos
Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Compostos de Sulfonilureia/farmacologia , Transportadores de Cassetes de Ligação de ATP , Animais , Benzamidas/farmacologia , Células COS , Eletrofisiologia , Hipoglicemiantes/farmacologia , Canais KATP , Fosfatos/química , Bloqueadores dos Canais de Potássio/química , Canais de Potássio/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...